Extensions 1→N→G→Q→1 with N=C2 and Q=C23.46D4

Direct product G=N×Q with N=C2 and Q=C23.46D4
dρLabelID
C2×C23.46D464C2xC2^3.46D4128,1821


Non-split extensions G=N.Q with N=C2 and Q=C23.46D4
extensionφ:Q→Aut NdρLabelID
C2.1(C23.46D4) = C24.157D4central extension (φ=1)64C2.1(C2^3.46D4)128,556
C2.2(C23.46D4) = C24.159D4central extension (φ=1)64C2.2(C2^3.46D4)128,585
C2.3(C23.46D4) = C23.38D8central extension (φ=1)64C2.3(C2^3.46D4)128,606
C2.4(C23.46D4) = C4.Q89C4central extension (φ=1)128C2.4(C2^3.46D4)128,651
C2.5(C23.46D4) = C4.67(C4×D4)central extension (φ=1)64C2.5(C2^3.46D4)128,658
C2.6(C23.46D4) = C24.84D4central stem extension (φ=1)64C2.6(C2^3.46D4)128,766
C2.7(C23.46D4) = (C2×C4).24D8central stem extension (φ=1)64C2.7(C2^3.46D4)128,803
C2.8(C23.46D4) = C24.89D4central stem extension (φ=1)64C2.8(C2^3.46D4)128,809
C2.9(C23.46D4) = C2.(C83Q8)central stem extension (φ=1)128C2.9(C2^3.46D4)128,816
C2.10(C23.46D4) = (C2×C8).169D4central stem extension (φ=1)64C2.10(C2^3.46D4)128,826
C2.11(C23.46D4) = (C2×C4).23Q16central stem extension (φ=1)128C2.11(C2^3.46D4)128,832
C2.12(C23.46D4) = M5(2).C22central stem extension (φ=1)168+C2.12(C2^3.46D4)128,970
C2.13(C23.46D4) = C23.10SD16central stem extension (φ=1)328-C2.13(C2^3.46D4)128,971

׿
×
𝔽